Nonlinear Bernstein-type Operators Providing a Better Error Estimation
نویسنده
چکیده
In this paper, when approximating a continuos non-negative function on the unit interval, we present an alternative way to the classical Bernstein polynomials. Our new operators become nonlinear, however, for some classes of functions, they provide better error estimations than the Bernstein polynomials. Furthermore, we obtain a simultaneous approximation result for these operators. 2010 Mathematics Subject Classification: 41A36; 41A28
منابع مشابه
On the approximation by Chlodowsky type generalization of (p,q)-Bernstein operators
In the present article, we introduce Chlodowsky variant of $(p,q)$-Bernstein operators and compute the moments for these operators which are used in proving our main results. Further, we study some approximation properties of these new operators, which include the rate of convergence using usual modulus of continuity and also the rate of convergence when the function $f$ belongs to the class Li...
متن کاملKing Type modification of Bernstein-Chlodowsky Operators based on q-integers
In this paper we first introduce the King type modification of q-Bernstein-Chlodowsky operators, then we examine the rate of convergence of these operators by means of modulus of continuity and with the help of the functions of Lipschitz class. We proved that the error estimation of this modification is better than that of classical q-Bernstein-Chlodowsky operators whenever 0 ≤ x ≤ bn 2[n]+1 . ...
متن کاملA numerical study of electrohydrodynamic flow analysis in a circular cylindrical conduit using orthonormal Bernstein polynomials
In this work, the nonlinear boundary value problem in electrohydrodynamics flow of a fluid in an ion-drag configuration in a circular cylindrical conduit is studied numerically. An effective collocation method, which is based on orthonormal Bernstein polynomials is employed to simulate the solution of this model. Some properties of orthonormal Bernstein polynomials are introduced and utilized t...
متن کاملNew polynomial preserving operators on simplices: direct results
A new class of differential operators on the simplex is introduced, which define weighted Sobolev norms andwhose eigenfunctions are orthogonal polynomialswith respect to Jacobiweights. These operators appear naturally in the study of quasi-interpolants which are intermediate between Bernstein– Durrmeyer operators and orthogonal projections on polynomial subspaces. The quasi-interpolants satisfy...
متن کاملApproximation and Shape Preserving Properties of the Bernstein Operator of Max-Product Kind
Starting from the study of the Shepard nonlinear operator of max-prod type by Bede et al. 2006, 2008 , in the book by Gal 2008 , Open Problem 5.5.4, pages 324–326, the Bernstein max-prod-type operator is introduced and the question of the approximation order by this operator is raised. In recent paper, Bede and Gal by using a very complicated method to this open question an answer is given by o...
متن کامل